PROLINE TUTORIAL

QUANTIFY BY SPECTRAL COUNTING

I/START PROLINE

A. EXPERIMENTAL DESIGN

In this tutorial, all sample mascot files available on Proline website will be used. This dataset contains the MS analysis of two samples of 2 µg yeast cell lysate spiked respectively with 100fmol and 10fmol of UPS1. Samples were analyzed in triplicate by nanoLC–MS/MS on an LTQ-Orbitrap Velos mass spectrometer. For more information on samples preparation and LC-MS/MS analyses, please refer to Ramus et al., J Proteomics. 2016 Jan 30;132:51-62. doi: 10.1016/j.jprot.2015.11.011.

Reproduce the following experimental design

Create all datasets

Import of the missing Mascot files (see Proline Basics tutorial)

If necessary, rename the files according to the Search Result Name to reproduce the experimental design below:

Comparison 100 vs 10 - 1%

F083067

F083064

F083068

F083069

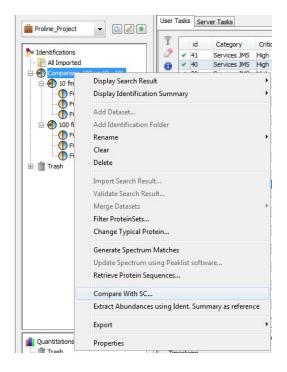
F083070

Note

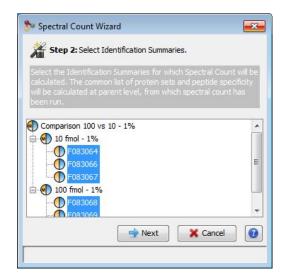
Files and datasets can be renamed manually. Files can also be renamed automatically by retrieving the Search Result name for example

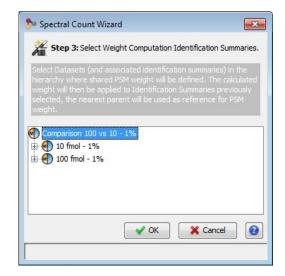
Comparaison 100 vs 10 1% is a merge of identification summaries, validated with the following parameters: 1% PSM (based on score) and rank = 1. The top level dataset ("Comparison 100 vs 10 - 1%) has been filtered to retain only protein sets with at least 1 specific peptide.

Action


- Validate the six search results using the described parameters.
- Merge the resulting identification summary at intermediate and top level of the dataset hierarchy.
- Filter the top level identification summary to retain only protein sets with at least 1 specific peptide.

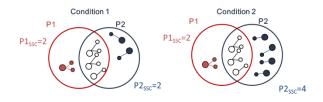
II/ COMPARE SAMPLES BY SPECTRAL COUNTING

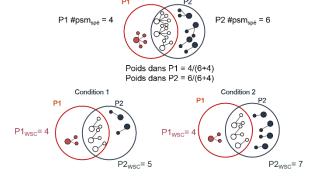

A. Run spectral counting


To run the SC comparison, you should have a merged dataset containing child datasets (which may be also merged datasets or identification datasets). Actually, only identification summaries merge could be used to execute SC.

To execute SC comparison, right-click on merged dataset and select *Compare with SC*.

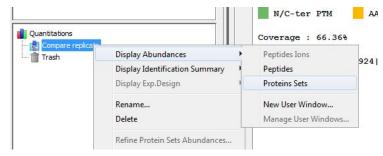
The opened dialog allows you to specify a name and a description for the comparison. On the second dialog box, Step 2, select the dataset on which you would like to perform the Spectral Count (in our case, we would like to compute the SC value for each of the six datasets) and finally choose the dataset where shared peptides spectral count weights will be calculated (in our case, the top level dataset).




B. COMPUTED VALUES

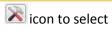
The algorithm implemented in Proline compute three different spectral count values:

- 1/ **Basic SC**: is the total number of MS/MS validated peptide spectrum match (PSM) of all peptides matching the considered protein set.
- 2/ Specific SC: Is the total number of validated PSM of peptides that are specific to the considered protein set. Shared peptides (peptides shared by different protein sets) are excluded from the count. The peptide specificity is calculated from the top level identification summary to ensure that the uniqueness of the protein set the peptide belongs to is not modified by an additional peptide identification from another result summary.
- 3/ Weighted SC: is based on all identified peptides, but taking into account that spectral count of shared peptides must be apportioned to reflect the contribution of each protein set. The weight of these respective contributions is based on the number of specific peptides of each considered protein set at the top level identification summary.



C. RESULT VISUALIZATION

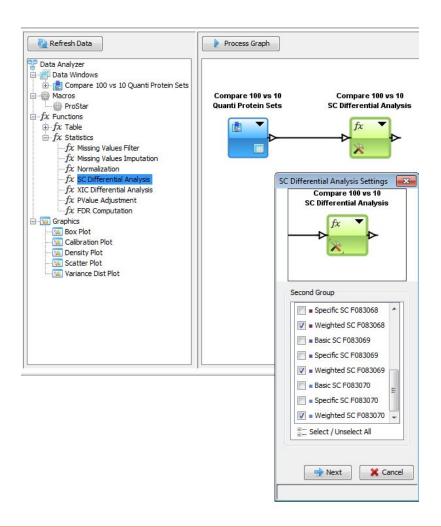
Once finished, a new dataset appears in the "Quantitations" panel (lower part of the left window). To visualize SC results, right-click on this dataset and select Display Abundances then Proteins Sets.



For each replicate, the table columns indicate: protein status/ Peptides Count / Basic SC / Specific SC / Weighted SC

Note

Every table in Proline can be customized by clicking on the kilon to select visible and invisible columns.


D. STATISTICAL ANALYSIS

In this section, we will perform the statistical beta binomial test ¹ on the weighted spectral count data and display the test results.

(1) Pham, T. V., Piersma, S. R., Warmoes, M., and Jimenez, C. R. (2010) On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics. Bioinformatics 26, 363-369

Action

- Open *Display Abundances* then *Proteins Sets* and click on
- The DataAnalyser window opens and a box indicating « SC Compare 1% Quanti Protein Sets » appears on the right side of the window.
- Add the « SC Differential Analysis » function to the workflow (drag & drop or double click the function) and connect the two boxes.
- Run the statistical function, select the columns belonging to each group to be compared

Action

To easily identify proteins of interest, add a column to the table with the «
 Expression Builder »: proteins with log ratio <= -2 or >= 2 and pvalue <0.01
 (use abs() function as shows in the screenshot below)

Action

• Visualize results as a Volcano plot: add a graphical view to the newly computed table, select scatter plot and choose log Ratio as x axis and -log10(bbinomial pvalue) as y axis.

Action

In the table, select rows (protein sets) with a non null value in the column that have been added with the « Expression Builder » and visualize those protein sets in the scatter plot.

Note

In Proline, selection can be "transferred" from a view to another view by using the icon. In the plot, right click on the selected points and create a group containing these points.

Bravo! 49 proteins proteins have been identified as differentially expressed by the spectral counting approach and the beta binomial statistical test. Among this 49 proteins, 43 proteins out of the 48 UPS1.

